Loading web-font TeX/Math/Italic

Monday, May 21, 2012

Continuous Probability

Question

The Cumulative Density Function of a random variable X is CDF(x)=c*e^{-2*x} if 0 \leq X < \infty and is 0 otherwise. What is P(X \geq 2)?



Answer

PDF(x)=\frac{\mathrm{d}}{\mathrm{d}x}CDF(x)


First we must normalize the PDF:


1=\int_{0}^{\infty}PDF(x)\ \mathrm{d}x
1=(c*e^{-2*\infty})-(c*e^{-2*0})
c=-1


PDF(x)=-\frac{1}{2}*e^{-2*x}


Now we can calculate the probability:


P(X \geq 2)=\int_{2}^{\infty}-\frac{1}{2}*e^{-2*x}\ \mathrm{d}x
P(X \geq 2)=(-e^{-2*\infty})-(-e^{-2*2})
P(X \geq 2)=e^{-4}
P(X \geq 2) \cong 0.018316

No comments:

Post a Comment