Question
The Cumulative Density Function of a random variable $X$ is $CDF(x)=c*e^{-2*x}$ if $0 \leq X < \infty$ and is $0$ otherwise. What is $P(X \geq 2)$?Answer
$PDF(x)=\frac{\mathrm{d}}{\mathrm{d}x}CDF(x)$First we must normalize the PDF:
$1=\int_{0}^{\infty}PDF(x)\ \mathrm{d}x$
$1=(c*e^{-2*\infty})-(c*e^{-2*0})$
$c=-1$
$PDF(x)=-\frac{1}{2}*e^{-2*x}$
Now we can calculate the probability:
$P(X \geq 2)=\int_{2}^{\infty}-\frac{1}{2}*e^{-2*x}\ \mathrm{d}x$
$P(X \geq 2)=(-e^{-2*\infty})-(-e^{-2*2})$
$P(X \geq 2)=e^{-4}$
$P(X \geq 2) \cong 0.018316$
No comments:
Post a Comment